![]() |
Модераторы: Poseidon |
![]() ![]() ![]() |
|
pro100saniok |
|
||||||||||||
Новичок Профиль Группа: Участник Сообщений: 1 Регистрация: 22.6.2010 Репутация: нет Всего: нет |
Помогите решить на С#
№1. Напечатать все последовательности длины k из чисел 1..n. Решение. Будем печатать их в лексикографическом порядке (последовательность a предшествует последовательности b, если для некоторого s их начальные отрезки длины s равны, а (s+1)-ый член последовательности a меньше). Первой будет последова- тельность <1, 1, ..., 1>, последней - последовательность <n, n, ..., n>. Будем хранить последнюю напечатанную последовательность в массиве x[1]...x[k].
Опишем, как можно перейти от x к следующей последова- тельности. Согласно определению, у следующей последовательности первые s членов должны быть такими же, а (s+1)-ый - больше. Это возможно, если x[s+1] было меньше n. Среди таких s нужно выбрать наибольшее (иначе полученная последовательность не будет непос- редственно следующей). Соответствующее x[s+1] нужно увеличить на 1. Итак, надо, двигаясь с конца последовательности, найти самый правый член, меньший n (он найдется, так как по предположению x<>last), увеличить его на 1, а идущие за ним члены положить равными 1. p:=k; while not (x[p] < n) do begin | p := p-1; end; {x[p] < n, x[p+1] =...= x[k] = n} x[p] := x[p] + 1; for i := p+1 to k do begin | x[i]:=1; end; Замечание. Если членами последовательности считать числа не от 1 до n, а от 0 до n-1, то переход к следующему соответствует прибавлению 1 в n-ичной системе счисления. №2. Напечатать все подмножества множества {1...k}. Решение. Подмножества находятся во взаимно однозначном со- ответствии с последовательностями нулей и единиц длины k. №3. Напечатать все перестановки чисел 1..n (то есть пос- ледовательности длины n, в которые каждое из чисел 1..n входит по одному разу). Решение. Перестановки будем хранить в массиве x[1],..., x[n] и печатать в лексикографическом порядке. (Первой при этом будет перестановка <1 2...n>, последней - <n...2 1>.) Для сос- тавления алгоритма перехода к следующей перестановке зададимся вопросом: в каком случае k-ый член перестановки можно увеличить, не меняя предыдущих? Ответ: если он меньше какого-либо из следу- ющих членов (членов с номерами больше k). Мы должны найти на- ибольшее k, при котором это так, т. е. такое k, что x[k] < x[k+1] > ... > x[n]. После этого x[k] нужно увеличить мини- мальным возможным способом, т. е. найти среди x[k+1], ..., x[n] наименьшее число, большее его. Поменяв x[k] с ним, остается рас- положить числа с номерами k+1, ..., n так, чтобы перестановка была наименьшей, то есть в возрастающем порядке. Это облегчается тем, что они уже расположены в убывающем порядке. Алгоритм перехода к следующей перестановке.
... переставить участок x[k+1] ... x[n] в обратном порядке Замечание. Программа имеет знакомый дефект: если t = n, то x[t+1] не определено. №4. Перечислить все k-элементные подмножества множества {1..n}. Решение. Будем представлять каждое подмножество последова- тельностью x[1]..x[n] нулей и единиц длины n, в которой ровно k единиц. (Другой способ представления разберем позже.) Такие пос- ледовательности упорядочим лексикографически (см. выше). Очевид- ный способ решения задачи - перебирать все последовательности как раньше, а затем отбирать среди них те, у которых k единиц - мы отбросим, считая его неэкономичным (число последовательностей с k единицами может быть много меньше числа всех последова- тельностей). Будем искать такой алгоритм, чтобы получение оче- редной последовательности требовало порядка n действий. В каком случае s-ый член последовательности можно увели- чить, не меняя предыдущие? Если x[s] меняется с 0 на 1, то для сохранения общего числа единиц нужно справа от х[s] заменить 1 на 0. Таким образом, х[s] - первый справа нуль, за которым стоят единицы. Легко видеть, что х[s+1] = 1 (иначе х[s] не первый). Таким образом надо искать наибольшее s, для которого х[s]=0, x[s+1]=1; ______________________ x |________|0|1...1|0...0| s За х[s+1] могут идти еще несколько единиц, а после них несколько нулей. Заменив х[s] на 1, надо выбрать идущие за ним члены так, чтобы последовательность была бы минимальна с точки зрения наше- го порядка, т. е. чтобы сначала шли нули, а потом единицы. Вот что получается: первая последовательность 0...01...1 (n-k нулей, k единиц) последняя последовательность 1...10...0 (k единиц, n-k нулей) алгоритм перехода к следующей за х[1]...x[n] последовательнос- ти (предполагаем, что она есть):
Другой способ представления подмножеств - это перечисление их элементов. Чтобы каждое подмножество имело ровно одно представление, договоримся перечислять элементы в возрастающем порядке. Приходим к такой задаче. №5. Перечислить все возрастающие последовательности дли- ны k из чисел 1..n в лексикографическом порядке. (Пример: при n=5, k=2 получаем 12 13 14 15 23 24 25 34 35 45.) Решение. Минимальной будет последовательность 1, 2, ..., k; максимальной - (n-k+1),..., (n-1), n. В каком случае s-ый член последовательности можно увеличить? Ответ: если он меньше n-k+s. После увеличения s-го элемента все следующие должны возрастать с шагом 1. Получаем такой алгоритм перехода к следующему:
№6. Перечислить все разбиения целого положительного чис- ла n на целые положительные слагаемые (разбиения, отличающиеся лишь порядком слагаемых, считаются за одно). (Пример: n=4, раз- биения 1+1+1+1, 2+1+1, 2+2, 3+1, 4.) Решение. Договоримся, что (1) в разбиениях слагаемые идут в невозрастающем порядке, (2) сами разбиения мы перечисляем в лек- сикографическом порядке. Разбиение храним в начале массива x[1]...x[n], при этом количество входящих в него чисел обозначим k. В начале x[1]=...=x[n]=1, k=n, в конце x[1]=n, k=1. В каком случае x[s] можно увеличить не меняя предыдущих? Во-первых, должно быть x[s-1] > x[s] или s = 1. Во-вторых, s должно быть не последним элементом (увеличение s надо компенси- ровать уменьшением следующих). Увеличив s, все следующие элемен- ты надо взять минимально возможными.
|
||||||||||||
|
|||||||||||||
Rodman |
|
|||
CIO ![]() ![]() ![]() ![]() Профиль Группа: Участник Сообщений: 6144 Регистрация: 7.5.2006 Где: Ukraine ⇛ Kyiv ci ty Репутация: 26 Всего: 122 |
|
|||
|
||||
![]() ![]() ![]() |
Правила форума "Центр помощи" | |
|
ВНИМАНИЕ! Прежде чем создавать темы, или писать сообщения в данный раздел, ознакомьтесь, пожалуйста, с Правилами форума и конкретно этого раздела.
Более подробно с правилами данного раздела Вы можете ознакомится в этой теме. Если Вам помогли и атмосфера форума Вам понравилась, то заходите к нам чаще! С уважением, Poseidon, Rodman |
1 Пользователей читают эту тему (1 Гостей и 0 Скрытых Пользователей) | |
0 Пользователей: | |
« Предыдущая тема | Центр помощи | Следующая тема » |
|
По вопросам размещения рекламы пишите на vladimir(sobaka)vingrad.ru
Отказ от ответственности Powered by Invision Power Board(R) 1.3 © 2003 IPS, Inc. |