![]() |
|
![]() ![]() ![]() |
|
DemakVik |
|
|||
Новичок Профиль Группа: Участник Сообщений: 5 Регистрация: 22.2.2014 Репутация: нет Всего: нет |
Алфавит - перечень символов, встречающихся в текстах. Каждый символ в алфавите встречается только один раз. Алфавит содержит не только прописные и строчные буквы, но символы знаков препинания, пробел, символы перевода каретки, символы новой строки и т.п. Каждый символ в алфавите имеет адрес, который изменяется от 1 - первый слева символ в алфавите, до N - последний слева символ в алфавите.
Рассмотрим пример. Пусть имеем два слова: Путин, Медведев. В этих словах имеются следующие символы: П, у, т, и, н, М, е, д, в. Этот набор символов называется собственным алфавитом слов Путин и Медведев. Задача: Найти алгоритм отображения слова Путин через слово Медведев и алгоритм восстановления слова Путин из слова Медведев. Решение: Возьмем алфавит, состоящий из всех символов русского и английского языка, знаков препинания, пробела. Всего 190 символов, т.е. N = 190. Порядок символов в алфавите - случайный. Запишем собственный алфавит в следующем виде: 17=П, 100=у, 34=т, 35=и, 144=н, 190=М, 88=е, 66=д, 1=в П, у, т, и, н, М, е, д, в В первой строке указаны адреса символов собственного алфавита в общем алфавите. Во второй строке указан собственный алфавит. Для преобразования буквы "П" в букву "М" сравним адреса букв "П" и "М". Это числа 17 и 190. Для отображения буквы "П" через букву "М" необходимо к числу 17 прибавить число 190-17=173 и по адресу 190 считать букву "М". Число 173 запишем в вектор на первое место, так как это число отображает первые буквы. Для отображения буквы "у" через букву "е" сравним адреса букв "у" и "е". Это числа 100 и 88. Для отображения буквы "у" через букву "е" необходимо к числу 100 прибавить неизвестное число x, такое чтобы получилось число 88. Решаем уравнение 100 + x = 88, отсюда x = -12. Наша задача получить все положительные числа для отображения. Поскольку, у нас получилось -12 < 1, то прибавим к нему количество чисел в алфавите -12 + 190 = 178. Таким образом, второе число отображающее букву "у" в букву "е" будет равно 178. Это число мы запишем на второе место в вектор 173, 178. Адрес буквы "е" вычисляется следующим образом: 100 + 178 - 190 = 88. Для отображения буквы "т" через букву "д" сравним адреса букв "т" и "д". Это числа 34 и 66. Для отображения буквы "т" через букву "д" необходимо к числу 34 прибавить неизвестное число x, такое чтобы получилось число 66. Решаем уравнение 34 + x = 66, отсюда x = 32. Таким образом, третье число отображающее букву "т" в букву "д" будет равно 32. Это число мы запишем на третье место в вектор 173, 178, 32. Адрес буквы "д" вычисляется следующим образом: 34+32= 66. Для отображения буквы "и" через букву "в" сравним адреса букв "и" и "в". Это числа 35 и 1. Для отображения буквы "и" через букву "в" необходимо к числу 35 прибавить неизвестное число x, такое чтобы получилось число 1. Решаем уравнение 35 + x = 1, отсюда x = -34. Наша задача получить все положительные числа для отображения. Поскольку, у нас получилось -34 < 1, то прибавим к нему количество чисел в алфавите -34 + 190 = 156. Таким образом, четвертое число отображающее букву "и" в букву "в" будет равно 156. Это число мы запишем на четвертое место в вектор 173, 178, 32, 156. Адрес буквы "в" вычисляется следующим образом: 35 + 156 - 190 = 1. Для отображения буквы "н" через букву "е" сравним адреса букв "н" и "е". Это числа 144 и 88. Для отображения буквы "н" через букву "е" необходимо к числу 144 прибавить неизвестное число x, такое чтобы получилось число 88. Решаем уравнение 144 + x = 88, отсюда x = -56. Наша задача получить все положительные числа для отображения. Поскольку, у нас получилось -56 < 1, то прибавим к нему количество чисел в алфавите -56 + 190 = 134. Таким образом, пятое число отображающее букву "н" в букву "е" будет равно 134. Это число мы запишем на пятое место в вектор 173, 178, 32, 156, 134. Адрес буквы "е" вычисляется следующим образом: 144 + 134 - 190 = 88. Предположим, что нам известно слово Медведев, алфавит и вектор чисел 173, 178, 32, 156, 134. Посмотрим, что получится при восстановлении. Находим адрес буквы "М" (первой буквы в слове Медведев) в алфавите. Это число 190. Поскольку при отображении мы прибавляли неизвестное число, то при восстановлении необходимо вычитать числа вектора. Вычтем из числа 190 первое число вектора 190 - 173 = 17. Поскольку число положительное, то по адресу 17 в алфавите находим букву "П". Первая буква восстановлена. Находим адрес буквы "е" (второй буквы в слове Медведев) в алфавите. Это число 88. Поскольку при отображении мы прибавляли неизвестное число, то при восстановлении необходимо вычитать числа вектора. Вычтем из числа 88 второе число вектора 88 - 178 = -90. Поскольку число меньше 1, то необходимо прибавить число N=190. Получим -90 + 190 = 100. По адресу 100 в алфавите находим букву "у". Вторая буква восстановлена. Всего восстановлено "Пу". Находим адрес буквы "д" (третьей буквы в слове Медведев) в алфавите. Это число 66. Поскольку при отображении мы прибавляли неизвестное число, то при восстановлении необходимо вычитать числа вектора. Вычтем из числа 66 третье число вектора 66 - 32 = 34. По адресу 34 в алфавите находим букву "т". Третья буква восстановлена. Всего восстановлено "Пут". Находим адрес буквы "в" (четвертой буквы в слове Медведев) в алфавите. Это число 1. Поскольку при отображении мы прибавляли неизвестное число, то при восстановлении необходимо вычитать числа вектора. Вычтем из числа 1 четвертое число вектора 1 - 156 = -155. Поскольку число меньше 1, то необходимо прибавить число N=190. Получим -155 + 190 = 35. По адресу 35 в алфавите находим букву "и". Четвертая буква восстановлена. Всего восстановлено "Пути". Находим адрес буквы "е" (пятой буквы в слове Медведев) в алфавите. Это число 88. Поскольку при отображении мы прибавляли неизвестное число, то при восстановлении необходимо вычитать числа вектора. Вычтем из числа 88 пятое число вектора 88 - 134 = -46. Поскольку число меньше 1, то необходимо прибавить число N=190. Получим -46 + 190 = 144. По адресу 144 в алфавите находим букву "н". Пятая буква восстановлена. Всего восстановлено "Путин". Числа в векторе использованы все, следовательно восстановление завершено. Количество чисел в векторе равно длине восстанавливаемой информации. Если бы первое слово было больше второго, то при достижении конца слова при отображении, необходимо перейти к первому символу. Таким образом, осуществляется отображение через один единственный символ. САМОЕ ВАЖНОЕ: адреса в алфавите должны начинаться с 1. Поскольку на элементы алфавита никаких ограничений не накладывается, то в качестве элементов алфавита могут выступать байты, произвольные тексты, слова и т.п. Можно использовать не один алфавит, а два и более. Необходимым и достаточным условием для отображения произвольного текста через другой произвольный текст: Алфавит должен содержать собственный алфавит. Поскольку числа вектора зависят только от порядка следования символов в алфавите и не зависят от самих символов, то существует целый класс, равный факториалу от N, отображения одной и той же информации через другую одну и ту же информацию. Этот алгоритм опубликован в 2009 г. |
|||
|
||||
Агрох |
|
|||
![]() Бывалый ![]() Профиль Группа: Участник Сообщений: 176 Регистрация: 6.4.2013 Где: Москва Репутация: нет Всего: 6 |
Назначение? Эффективность (при условии наличия востребованного назначения)?
А так похоже на алгоритм архивации данных. Только не похож на сильно эффективный. --------------------
Putin here, Putin there, Putin almost everywhere! |
|||
|
||||
DemakVik |
|
|||
Новичок Профиль Группа: Участник Сообщений: 5 Регистрация: 22.2.2014 Репутация: нет Всего: нет |
Это вот для чего: Новый способ хранения персональных данных В базе данных персональные данные должны сохраняться в следующем виде: 1) Вымышленные персональные данные, которые по внешнему виду не отличимы от действительных персональных данных. Например, реальная фамилия Петров может храниться в виде фамилии Медведевский или Obama или любой другой. Размер реальной фамилии и размер вымышленной фамилии между собой никак не связаны. 2) Набор целых чисел от 1 до 65535 в количестве, равному размеру реальных персональных данных. Например, для фамилии Петров - это 6 чисел, так как в фамилии Петров 6 букв, примерно таких: 111, 75, 71, 29, 100, 211. Больше ничего в базе данных не должно сохраняться. Для восстановления реальных данных из вымышленных необходимо в оперативной памяти компьютера хранить алфавит - перечень символов, используемых для отображения персональных данных. Максимум - это 65535 символов в кодировке Unicode. Порядок следования символов в алфавите имеет первостепенное значение. Набор чисел в приведенном выше примере для фамилии Петров - это связь между адресами букв реальной фамилии Петров в алфавите и адресами букв вымышленной фамилии Медведевский в алфавите. Алфавит отличается от шрифта тем, что символы в алфавите различаются только по коду и порядок следования символов произвольный. Начертания символов не имеет никакого значения для алфавита. В шрифте начертания символов имеет первостепенное значение и порядок следования символов единственный. Адреса букв в алфавите и реальные буквы между собой никак не связаны. Если хакеры украдут из базы данных вымышленную фамилию Медведевский или Obama и украдут набор чисел 111, 75, 71, 29, 100, 211, то восстановить реальную фамилию Петров не смогут, так как отсутствует алфавит. А украсть алфавит из оперативной памяти практически невозможно. Если изменить в алфавите порядок следования символов, то это будет уже другой набор чисел для фамилии Петров. Можно время от времени изменять алфавит и заменять наборы чисел в базе данных для персональных данных. Вымышленные персональные данные можно не изменять. Как видите, украсть персональные данные невозможно, так как их попросту нет. Кража вымышленных персональных данных в этом случае бессмысленна. Под персональными данными мы понимаем в том числе пароли, логины, аккаунты и т.п. |
|||
|
||||
Агрох |
|
|||
![]() Бывалый ![]() Профиль Группа: Участник Сообщений: 176 Регистрация: 6.4.2013 Где: Москва Репутация: нет Всего: 6 |
Т.е. это вариант криптосистемы с открытым ключом. Так и надо было писать.
А как он туда попадает? Если речь идёт именно о хранении персональных данных, таких как фамилия, то есть минус у алгоритма. Украв одну комбинацию, закодированное слово и набор цифр, хакеры, скорее всего, смогут украсть и другие, а точнее все. Т.к. речь идёт о фамилиях то можно предположить, что большая их часть являются стандартными, типа тех же Петров, Иванов, Сидоров, а значит вполне реально восстановить алфавит, или его большую часть, имея в качестве исходных данных закодированные слова и цифры.
Количество цифр равно количеству символов в незакодированном слове, вот и связь. Это ещё в большей степени упрощает восстановление алфавита. Т.к. зная что словом "Медведевский" закодировано слово из 6-ти букв можно сразу сравнивать его только со стандартными фамилиями из 6 букв. В MySQL есть однонаправленный алгоритм шифрования, когда любое слово, хоть "А" хоть "Абракадабра" в закодированном виде всегда представляется как 40 символов. Вот тут да, не видно, сколько реально символов в исходном тексте. Не совсем понял, алгоритм двунаправленный? --------------------
Putin here, Putin there, Putin almost everywhere! |
|||
|
||||
![]() ![]() ![]() |
Правила форума "Алгоритмы" | |
|
Форум "Алгоритмы" предназначен для обсуждения вопросов, связанных только с алгоритмами и структурами данных, без привязки к конкретному языку программирования и/или программному продукту.
Если Вам понравилась атмосфера форума, заходите к нам чаще! С уважением, maxim1000. |
1 Пользователей читают эту тему (1 Гостей и 0 Скрытых Пользователей) | |
0 Пользователей: | |
« Предыдущая тема | Алгоритмы | Следующая тема » |
|
По вопросам размещения рекламы пишите на vladimir(sobaka)vingrad.ru
Отказ от ответственности Powered by Invision Power Board(R) 1.3 © 2003 IPS, Inc. |